If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200-200x+x^2=0
a = 1; b = -200; c = +200;
Δ = b2-4ac
Δ = -2002-4·1·200
Δ = 39200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39200}=\sqrt{19600*2}=\sqrt{19600}*\sqrt{2}=140\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-140\sqrt{2}}{2*1}=\frac{200-140\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+140\sqrt{2}}{2*1}=\frac{200+140\sqrt{2}}{2} $
| 8•x=10 | | -18.01+0.4j=-3.52+2.5j | | -2(8-11k)=4(k-4)+7k | | 3x-5(x-4)=-8+2x+20 | | 9.4r=8.8r-0.18 | | 3x=5/6x+13 | | 13^4x+3=17^x+1 | | -16t^2+31t-2=0 | | 0=t^2/24+0.25t-4.6 | | (4a+11=)+(a+16=) | | 11.2p-14.8p+14.53=-4.5p-2.84 | | m-3m(-3)=10/3 | | 2.07025=e+-17 | | 2(5/2)+2(x)=5/2×x | | 15(x)=15-13(x)^2 | | −2x−5=2−4x−(x−1) | | 64=10x-2x-16 | | 4^(x-5)=16 | | 15-(w)/(4)=28 | | 4s+9s-3s=10 | | 20(x)=20-13x^2 | | -2.44-s=15.2+0.4s | | -(1)/(2)x-7=-11 | | 28=4i+10i+12i | | 2x-1+8x-3+x=180 | | 800x^2-180x+9=0 | | 7-3c=-4c | | 27=4s+2s+3s | | 9.50=5+2h | | 4∣x−8∣+7=−5∣x−8∣−29 | | 27=6s+2s+3s | | 15x+3(10x-8)=51 |